LYCEE	DIR.REG.EDUC.DE SILIANA			
Lycée Pilote	DEVOIR DE SYNTHESE N°1 EN SCIENCE PHYSIQUES			
Siliana	DATE: 26/12/2016	DUREE : 1 HEURES		
SECTION	PREMIERE ANNEE PILOTE 1 & 3			
PROFESSEUR	GARMAZI SAHBI			

A/ Chimie: (8 pts)

Exercice $N^{\circ}1$: (4,5 pts)

On donne: $M_H = 1 \text{ g.mol}^{-1}$; $M_C = 12 \text{ g.mol}^{-1} \text{ V}_m = 24 \text{ L.mol}^{-1}$

On remplit successivement un flacon vide, dans les même conditions expérimentale de température et de pression, avec un corps gazeux (A) de formule C_xH_{12} de masse $m_A=1,44~g$, puis par un autre corps gazeux (B) de formule C_2H_6 de masse $m_B=0,6~g$.

- 1°) dire ,en justifiant la réponse, si les corps (A) et (B) sont deux composés organiques ou non.
- 2°)a- Déterminer la valeur de la masse molaire moléculaire de corps (B).
- b- Calculer la quantité de matière de ce corps (B).
- **c-** Calculer le volume de ce flacon en cm³.
- 3°)a- Montrer que la relation entre les masses molaires moléculaires de (A) et (B) peut se mettre sous la forme : $M_A = 2,4.M_B$.
- b- Déduire la formule de corps (A).

Exercice N°2: (3,5 pts)

On ajout une masse m de nitrate d'ammonium NH_4NO_3 dans l'eau distillé et on agite jusqu'a la disparition de NH_4NO_3 , on obtient un mélange homogène. La mesure de la température initiale (avant l'ajout de NH_4NO_3 dans l'eau) a donner T_1 =20°C. On mesure de nouveau la température de ce mélange homogène , on trouve T_2 =16°C.

- 1°)a- Proposer un nom à cette expérience?
- b- Préciser le solvant et le soluté.
- c-Donner le nom de ce mélange obtenu.
- 2°) On se basons sur la mesure de la température avant et après l'expérience.

Donner l'effet thermique qui suit cette expérience.

Сар	Bar				
A ₁ A ₁ A ₂ B	0,75 0,75 0,75 0,75				
C B	0,75 0,75 0,75				
A ₁ A ₁ A ₁	0,75 1 0,75				

NB: La page -3- est à rendre avec la copie

B/ Physique: (12 pts)

Exercice N°1: (6,75 pts)

On considère le circuit électrique donné par la figure-1- de la page -3- (à remplir et à remettre avec la copie), formé par un générateur (\mathbf{G}) , interrupteur (\mathbf{K}) , cinq ampèremètres, trois lampes, un moteur (\mathbf{M}) et un électrolyseur (\mathbf{E}) .

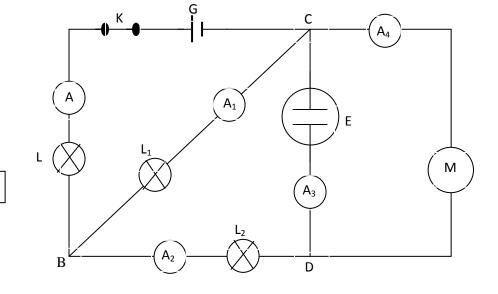
- 1°) Préciser le type de ce circuit.
- 2°) Représenter sur la figure-1-, le sens de courant dans chaque branche dont on respect l'indice de l'ampèremètre.
- 3°) Dans quel sens se déplace les électrons dans la branche [DC].
- **4**°) **a-** Compléter le tableau dans la page-3- (à remplir et à remettre avec la copie).
- **b-** Calculer la quantité d'électricité $\, Q \,$ qui traverse l'électrolyseur ($\, E \,$) pendant une durée de temps $\, \Delta t = 20 \, min \,$.
- c- En appliquant la loi des nœuds, déterminer les intensités de courant I et I_4 , mesurée respectivement par les ampèremètres (A) et (A_4) .

Exercice $N^{\circ}2$: (5,25 pts)

On considère le montage de la figure-2- dans la page-3- (à remplir et à remettre avec la copie), formé d'un générateur et cinq dipôles récepteurs.

On donne: $U_{AD} = 6.0 \text{ v}$; $U_{AB} = 2.5 \text{ v}$ et $U_{CD} = 3.0 \text{ v}$

- 1°) a- Représenter convenablement, sur la figure-2- le schéma de l'appareil qui permet de mesurer la tension \mathbf{U}_{AB} .
- b- Représenter sur la figure-2- les tensions suivantes: U_{AD}, U_{AB}, U_{BD}, U_{CD}, U_{AC} et U_{BC}.
- 2°) En précisant la loi utilisée, Calculer les tensions : U_{BD} , U_{AC} et U_{BC} .


Bar
0,75 1,25 0,75 1,5
1,5
0,75 1,5 3

Nom: Classe: N°:

B/ Physique:

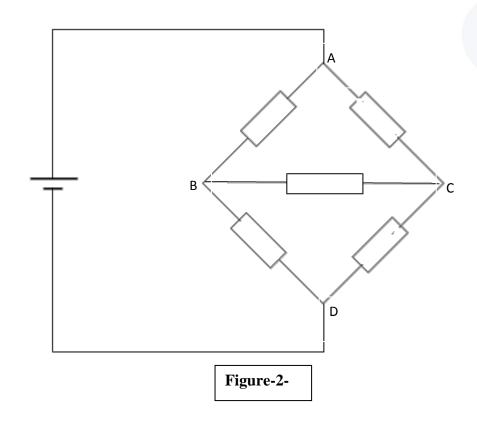

Exercice N°1

Figure-1-

Ampèremètre	Calibre	Lecture	Echelle	Intensité
A_1	1A	50	100	$I_1 =$
A ₂		7	30	$I_2 = 0.7 A$
A_3	300 mA		30	$I_3 = 0.3 \text{ A}$

Exercice N°2

Page 3 sur 3