Lycée S.M.Slim

DEVOIR SYNTHESE N°1

2^{ème}SC_{1,4}

KEF DUREE: 2H 12/12/2009

-1-

I- CHIMIE: (08 points)

Exercice N°1: (3 points)

B Cap

Un élément chimique X appartient à la troisième ligne et la deuxième colonne du tableau périodique.

1°/ a- Faire la répartition électronique de l'élément X. Justifier.	0,5 A ₂
b- Déduire son numéro atomique Z.	0,5 A ₂
c- Donner son schéma de Lewis.	0,5 A ₁
d- Représenter le noyau X sachant qu'il renferme 13 neutrons.	1,0 A ₂
2°/ Quel ion peut-il se former à partir de X ?	0,5 C

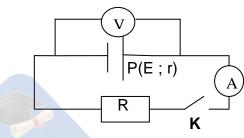
Exercice N°2: (5 points)

On donne un extrait du tableau de classification périodique:

F Ne						
No. Mar Ci D					F	Ne
Na Mg Si P Ci	Na	Mg	Si	Р	CI	

1°/ Donner la configuration électronique et le schéma de Lewis des éléments : Na ; P ; Cl et Ne. 2,0 A₂
2°/ Donner les noms des familles chimiques au quelles appartiennent les éléments Cl et Ne. 0,5 A₁
3°/ a- Définir l'électronégativité d'un élément chimique. 0,25 A₁
b- Peut-on parler de l'électronégativité du Néon ? Expliquer. 0,5 C
c- Classer les éléments qui figurent dans le tableau périodique ci-dessus par ordre d'électronégativité croissante. 0,5 A₂
4°/ la molécule de chlorure de phosphore est constituée d'un atome de phosphore et 3 atomes

de chlore.


a- Représenter le schéma de Lewis de cette molécule.
b- Préciser le type de liaison entre les atomes de la molécule.
c- Placer les fractions de charge sur les différents atomes.
0,5 A₂
0,5 A₂

II- PHYSIQUE: (12 points)

Exercice Nº1: (6 points)

Un circuit électrique comprend une pile P, un résistor R, un interrupteur K, un ampèremètre et un voltmètre branché aux bornes de la pile. (Voir figure)

- * K **ouvert**, le voltmètre indique 24 V.
- * K **fermé**, le voltmètre indique 22 V et l'ampèremètre indique 2 A.

1°/ Calculer:

a- La f.é.m. E et la résistance interne r de la pile P.	1,5 A ₂
h- La résistance R du résistor	0.75 Δ.

2°/ On place dans le même circuit en série avec le résistor, un moteur M.

- On cale le moteur, l'ampèremètre indique I₁ = 1,5 A.
- Lorsque le moteur fonctionne l'ampèremètre affiche $I_2 = 1 A$.
- a- Faire le schéma du circuit.

 0,75 A₁
- **b-** Calculer la f.c.é.m. E' et la résistance interne r' du moteur.

3°/ dans le cas où le moteur fonctionne :

a- Calculer la puissance électrique reçue par le moteur.
b- Déterminer la puissance mécanique du moteur. Déduire son rendement.
1,0 A₂

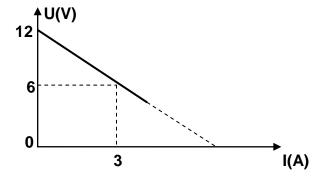
Exercice N°2: (6 points)

Un circuit électrique est constitué d'un générateur **G** de f.é.m. E et de résistance interne r **I- Expérience1** : On branche aux bornes du générateur un résistor de résistance $R_1 = 4 \Omega$. Un ampèremètre placé en série dans le circuit indique $I_1 = 2 A$.

II- Expérience2 : On branche aux bornes du générateur un résistor de résistance $R_2 = 1 \Omega$. L'ampèremètre indique $I_2 = 4 A$.

1°/ Ecrire la loi d'Ohm aux bornes de chaque dipôle.

0,5 A₁


2°/ Déterminer les grandeurs caractéristiques (E; r) du générateur.

1,0 A₂

0,75 A₂

3°/ Le générateur **G précédent** de f.e.m E et de résistance interne r est placé dans un circuit formé par un ampèremètre en série avec un rhéostat de résistance variable.

Une étude expérimentale a permis de tracer la caractéristique intensité-tension du générateur. (Voir figure ci contre) :

a en indiquant les branchements de l'ampèremètre et circuit.

Représenter le schéma du circuit du voltmètre dans le 0,75 A₁

- **b-** A partir du graphe, <u>retrouver</u> les valeurs des grandeurs caractéristiques du générateur. 1,0 A₂
- c- Déterminer graphiquement et par le calcul la valeur de l'intensité du courant électrique court-circuit l_{cc}.
 1,0 A₂

4°/ On branche en parallèle avec le générateur **G** un électrolyseur (E' = 8 V ; r' = 2 Ω).

a- En appliquant la loi de Pouillet, déterminer l'intensité du courant électrique qui circule dans le circuit.

b- Déduire les coordonnées du point de fonctionnement P. Conclure quant à l'adaptation des deux dipôles.

نجُدْنِي

Bon Travail