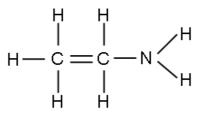
Lycée	e secor	ndaire
⁷ aouia.	Ksiba.	Thravet

Devoir de synthèse N°1

2^{ème} année secondaire sciences 3

Professeur:

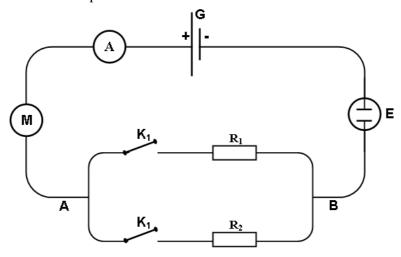

M. Adam Bouali

Durée: une heure

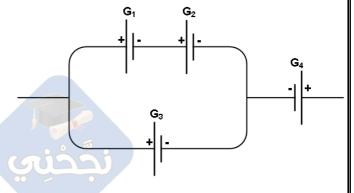
09 - 12 - 2010

20,8.19 ⁻¹⁹ C	12,8.10 ⁻¹⁹ C	
	П.	
° de groupe :	N° de groupe :	
° de période :	N° de période :	
nt au ${f V}^{ m eme}$ ${f groupe}$ et à la ${f 2}^{ m eme}$	^e période.	
onique de chacun des atomes	H, C et N.	1,5
•••••		
ente.		
	o de période : que du composé neutre forme cons entre ces ions ? miques suivants : code 4 électrons sur la couche nt au Vème groupe et à la 2ème	o de période : No de période : que du composé neutre formé par les ions aluminium et oxygène sons entre ces ions ? miques suivants :

3) La formule de la molécule d'éthylamine est C₂H₇N. On propose la représentation de Lewis de cette molécule.

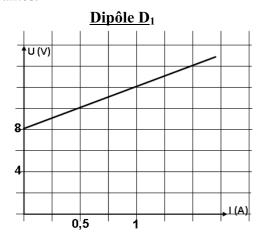


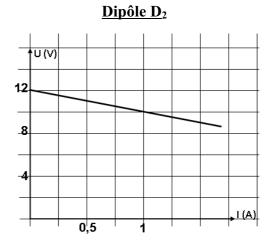
a. Montrer que cette représentation de Lewis de la molécule d'éthylamine est incorrecte. 0,5 **b.** Donner la représentation de Lewis correcte de la molécule d'éthylamine. 0.75 B

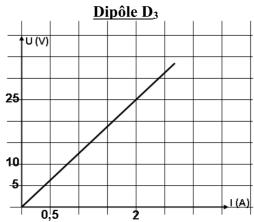

PHYSIQUE: 12 POINTS

EXERCICE N°1:

On considère le circuit électrique schématisé ci-dessous.


- G est un générateur de fem E et de résistance interne r.
- M est un moteur de fcem $E'_1 = 2.5$ V et de résistance interne $r'_1 = 1.5$ Ω.
- E est un électrolyseur de frem $E_2 = 1.5 \text{ V}$ et de résistance interne $r_2 = 1 \Omega$.
- \mathbf{R}_1 est un résistor de résistance $\mathbf{R}_1 = 3 \Omega$.
- $\mathbf{R_2}$ est un résistor de résistance $\mathbf{R_2} = \mathbf{6} \Omega$.
- K_1 et K_2 sont deux interrupteurs.
- A. Le générateur G est composé par une association de 4 générateurs montés comme l'indique le schéma ci-contre, avec
 - $G_1 (E_1 = 13 \text{ V} ; r_1 = 1 \Omega)$
 - $G_2 (E_2 = 7 \text{ V} ; r_2 = 0.5 \Omega)$




➤ Trouver la fem E et la résistance équivalente r du générateur G équivalent.		
	1,5	B
 B. On prendra pour la suit de l'exercice : E = 12 V et r = 2,5 Ω. I. On ferme l'interrupteur K₁ et on laisse K₂ ouvert. 1) Déterminer l'intensité du courant, I, indiquée par l'ampèremètre. 		
2) December 1 medicate du contain, 1, marquee par 1 amperemene	1	B
 2) Déterminer la puissance électrique, P_G, fournie par le générateur au circuit extérieur. 3) Déterminer la puissance électrique, P_{th}, dissipée par effet joule dans le circuit extérieur. 	0,5	A
	1	A B
4) Déterminer la puissance électrique, P_{utile} , transformée en puissance utile par le circui extérieur.	t 0,75	
5) Si on bloque le moteur, est-ce que l'ampèremètre indiquera une autre valeur de l'intensité Si oui calculer cette valeur.	?	B
II. On ferme les deux interrupteurs K ₁ et K ₂ . L'ampèremètre indique une nouvelle intensité I'.	1	
Le résistor R ₁ dissipe 28,8 J en une minute de fonctionnement. 1) Déterminer la valeur de I ' ₁ , l'intensité du courant qui traverse le résistor R ₁ .	0,5	B
2) En déduire la tension U_{AB} .	0,25	A
3) Déterminer l'intensité du courant I'2 qui traverse le résistor R2. Déduire la valeur de I'.	0,75	B
4) Calculer donc les valeurs des tensions aux bornes du générateur, du moteur et d l'électrolyseur.	e 0,75	R
رکونی	0,73	

EXERCICE N°2:

On considère les caractéristiques intensité-tension de trois dipôles électriques D_1 , D_2 et D_3 , suivantes.

1)	Attribuer à chaque caractéristique la nature de son dipôle électrique.	0,75	A
2)	Déterminer la ou les grandeurs caractéristiques de chaque dipôle.	1,25	В
3)	Ces trois dipôles sont associés en dérivation, comme l'est indiqué ci contre. Sachant que le rendement du dipôle D_1 est $\rho=80$ %, montrer que la tension aux borne de ce dipôle est $U=10$ V.	0,5	•
4)	Déduire les valeurs des intensités $\mathbf{I_1}$, $\mathbf{I_2}$ et $\mathbf{I_3}$ parcourant respectivement $\mathbf{D_1}$, $\mathbf{D_2}$ et $\mathbf{D_3}$.	1,5	В