Lycée Chebbi

Devoir de synthèse n°1 Sciences physiques

Prof:K,ATEF 2SC:1,2

 A_2B

C

 A_1

2,5

0,25

0,25

1

0.5

0,5

0,25

0,25

0,75

0,75

0.5

0,5

 A_2B

 A_2B

C

 A_2B

 \mathcal{B}

 A_2B

Chimie (8points)

Exercia	e n°1:	(3points)
•		\ <i>I</i>

- 1) On donne la charge élémentaire : $e = 1,6.10^{-19}$ C.
- 1) Compléter le tableau par ce qui convient de la page Annexe.
- 2) Donner la formule statistique du composé neutre formé par les ions aluminium et oxygène.
- 3) De quel type sont les liaisons entre ces ions?

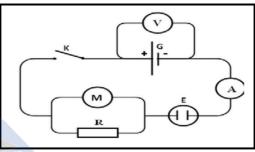
Exercice n°2: (5points)

On considère les éléments chimiques suivants :

- *L'oxygène: (K)2(L)6
- \mathcal{L}' hydrogène : $\mathcal{H}(Z = 1)$
- * Le carbone : C ; il possède 4 électrons sur la couche L.
- * L'azote : N; il appartient au Veme groupe et à la 2ème période.
- ♣ Le fluor F appartient a la famille des halogènes dans la 2^{éme} période
- 1) Donner la structure électronique de chacun des atomes H, C, F,O et N.
- 2) a. Définir la liaison covalente.
- 6. Préciser le nombre de liaisons covalentes que peut établir chacun des atomes
- \mathcal{H} , C, F, O et \mathcal{N} .
- 3) La formule de la molécule d'éthylamine est $C_2\mathcal{H}_7\mathcal{N}$. On propose la représentation de

Lewis de cette molécule

н — С =	$= \begin{matrix} H \\ C \\ H \end{matrix} - N < \begin{matrix} H \\ H \end{matrix}$

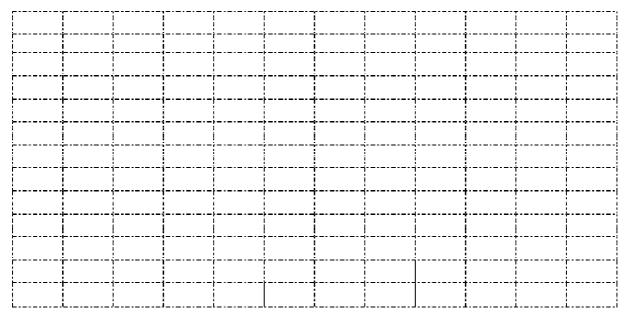

- a. Montrer que cette représentation de Lewis de la molécule d'éthylamine est incorrecte.
- **6.** Donner la représentation de Lewis correcte de la molécule d'éthylamine.
- **4-a**-Faire les schéma de Lewis des molécules suivante : CF_4 , \mathcal{NH}_3 et \mathcal{H}_2O
 - **b**-Donner sur chaque atome les fractions des charges
- 5- a-Expliquer la formation des molécules \mathcal{NH}_4^+ et \mathcal{H}_3O^+
 - **6-**Faire les schémas de Lewis de chaque molécule

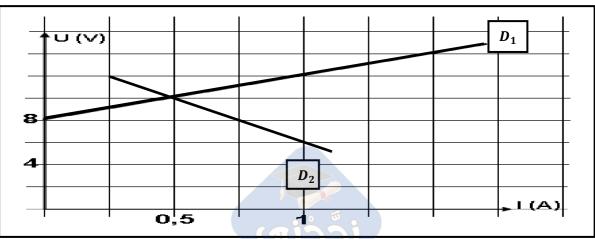
Physique: 12 points

Exercice $n^{\circ}1:(6,75 \text{ points})$

On considère le montage électrique représenté ci-contre où:

- ♣ G est un générateur de f.é.m. E et de résistance interne r,
- * \mathbf{E} est un électrolyseur de f.c.é.m. $\mathbf{E}' = 2,5 \ \mathbf{V}$ et de résistance interne $r' = 5 \Omega$,
- # M est un moteur de f.c.é.m. E" et de résistance interne r" = 1 Ω ,
- * Rest un résistor et K est un interrupteur.


I. La tension à vide du générateur est égale à 12 V. Déterminer les indications du voltmètre et de l'ampèremètre lorsque l'interrupteur K est ouvert. II. On ferme l'interrupteur K, l'ampèremètre indique le passage d'un courant électrique	0,5	\mathcal{A}_2
d'intensité $I = 0,8 A$, alors que le voltmètre indique la tension $V = 10,5 V$. 1) Rappeler les lois d'Ohm relatives à : -un dipôle actif : -un récepteur actif :	0,5	$\mathcal{A}_2\mathcal{B}$
-un récepteur passif :	0,25	A_2B
2) Déterminer la résistance interne r du générateur 3) Calculer la tension aux bornes de l'électrolyseur $\mathcal{U}_{\mathbf{E}}$.	0,25	B
4) Déduire les valeurs des tensions $U_{\mathfrak{M}}$ et $U_{\mathfrak{R}}$ respectivement aux bornes du	0.5	
moteur et du résistor.	0,5	A_2B
5) Tracer sur la même figure les caractéristiques des trois dipôles	0,75	B
6) La puissance dissipée par effet joule par le résistor est $P_J = 1,6$ w.		
a) Déterminer l'intensité du courant $I_{\mathcal{R}}$ traversant le résistor, ainsi que sa	0,5	A_2B
résistance R.	0.25	\mathcal{A}_2
6) En déduire l'intensité du courant $I_{\mathfrak{M}}$ traversant le moteur.	0,25	$\mathcal{A}_2\mathcal{B}$
c) Calculer la f.c.é.m. E" du moteur.	0,5	A_2
d) Déterminer le rendement $ ho_1$ du moteur 7) a-On bloque le moteur, est-ce que l'indication de l'ampèremètre change ou non ?	0,5	C
Si oui trouver la nouvelle indication.	,,,,	ľ
6 -Calculer la nouvelle valeur du rendement $ ho_2$.Conclure	0,5	\mathcal{A}_2
Exercice n°2: (5,25 points)	0,5	7.2
On considère les caractéristiques intensité-tension de trois dipôles électriques		
$\mathcal{D}_1, \mathcal{D}_2$		
1) Identifier chaque dipôle et donner un exemple	0.5	A_2B
2) Déterminer la ou les grandeurs caractéristiques de chaque dipôle.	1	B
3) Déterminer l'intensité du courant de court circuit I_{cc} par deux méthodes.	0,5	\mathcal{A}_2
4) En réalité le générateur est constituée par 3 générateurs sont monté en série		
$G_1(\mathbf{E}_1=6\mathcal{V},r_1=6\Omega)$ et deux générateurs G_2 et G_3 sont identiques de f.é.m \mathbf{E}_0 et de	1	$\mathcal{A}_2\mathcal{B}$
résistance interne r_0 . Faire un schéma clair et déterminer les valeurs de $oldsymbol{E_0}$ et $oldsymbol{r_0}$		
Ŧ		
5) Montrer que le rendement du dipôle générateurs s'écrit sous la forme $ ho=1-rac{I}{I_{cc}}$ et	0,5	C
calculer sa valeur pour $V=5V$		
6) Déterminer graphiquement le point de fonctionnement et donner ses cordonnées	0,5	A_1
7) On ajoute ou circuit précédent un dipôle résistor de résistance R=12 Ω		
a-Faire un schéma clair 6- Ronrésenter sur le même figure la caractéristique intensité tension du dinôle	0,25	B
6- Représenter sur le même figure la caractéristique intensité tension du dipôle résistor et déduire les cordonnes du point de fonctionnement	0,5	$\mathcal{A}_2\mathcal{B}$
c- Calculer l'intensité du courant qui circule dans le circuit	0.5	
	0,5	



Annexe

Nom	Prénom	Classe	1 V0
<i>3</i> γ <i>0m</i>		Cusse	

Aluminium (Al)	Oxygène (0)
20,8 10 ⁻¹⁹ C	12,8 10 ⁻¹⁹ C
N° du groupe :	N° du groupe :
N° du période :	N° du période :
	20,8 10 ⁻¹⁹ C N° du groupe:

