2^{ème} Sciences : Sc₇ Durée : 2heures

Date : le 04 / 12/ 2008

Coefficient: 4

Devoir de Synthèse N°1 Mathématiques

Exercice N°1: (4 points)

I – On considère le deux trinômes de second degré A et B dont le tableau de signe et le suivant :

<u> </u>	$ -\infty $	1	2	4	$+\infty$
A	+ (-	ф	+	+
В	_	_	ф	+ (-

- 1) Résoudre dans IR les équations suivantes :
 - $\bullet \quad A \times B = 0$
 - $\bullet \quad |A| + |B| = 0$
- 2) Résoudre dans IR les inéquations suivantes :
 - $A \times B > 0$
 - $\bullet \quad \frac{A}{R} \le 0$

II – Résoudre dans *IR* l'inéquation : $\frac{x^2 + 2x + 4}{x - 2} \ge 2x + 1.$

Exercice N°2: (4 points)

- 1) Donner le tableau de signe du trinôme : $3x^2 11x + 8$.
- 2) Soit $I =]-\infty,1] \cup \left[\frac{8}{3},+\infty\right[; J = [1,+\infty[\text{ et } K = \left[1,\frac{7}{2}\right].\right]$

a – Déterminer $L = I \cap J$.

b – Déterminer alors : $L \cap K$

3) Résoudre l'inéquation : $\sqrt{3x^2 - 11x + 8} \le x - 1$.

Exercice N°3: (5 points)

ABC un triangle tel que, AB = 4; AC = 5 et BC = 6. (Unité cm)

On désigne par I le milieu de [BC], et G le point défini par $-\overrightarrow{GA} + 2\overrightarrow{GB} + 2\overrightarrow{GC} = \overrightarrow{0}$ 1).

- 1) a Montrer que G est le barycentre de points pondérés (A,-1) et (I,4). Construire G. b Déterminer l'ensemble des points M du plan tel que : $\|-\overrightarrow{MA} + 4\overrightarrow{MI}\| = 3\|\overrightarrow{MB} + \overrightarrow{MC}\|$
- 2) Soit le point H tel que $t_{2\overline{AB}}(A) = H$.

a – En utilisant (1) montrer que : $\overrightarrow{GA} + 2\overrightarrow{GC} = -2\overrightarrow{AB}$.

b – En déduire que G, C et H sont alignés.

Exercice N°4: (5 points)

Soient ABCD un rectangle de centre O et ζ le cercle circonscrit au rectangle ABCD. (Voir page 3)

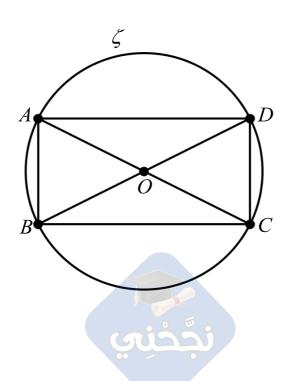
- 1) Construire le point E image de O par $t_{\overrightarrow{BC}}$. (sur la page 3)
- 2) Construire le cercle ζ' image de ζ par $t_{\overrightarrow{BC}}$.
- 3) Quelle est l'image de la droite (OD) par $t_{\overline{BC}}$.
- 4) La droite (EC) recoupe le cercle ζ' en F. Montrer que $t_{\overline{BC}}(D) = F$.
- 5) Soit M un point variable sur le cercle ζ . Quelle est l'ensemble des points N tels que $\overrightarrow{AM} = \overrightarrow{DN}$

3.7	D /	3.10
Nom:	Prénom :	 N° :

Exercice QCM: (2 points)

Pour chacune des questions suivantes, une seule des trois réponses proposées est exacte. Cocher alors la bonne réponse :

- 1) On considère trois points A, B et G tel que : $\overrightarrow{AG} = \frac{2}{7} \overrightarrow{AB}$ alors G est le barycentre des points pondérés :
 - \Box (A,2) et (B,5)


- 2) I est le milieu de segment [EF] alors I est le barycentre des points pondérés :
- \bigcap (E,1) et (F,-1)
- 3) L'ensemble des solutions de l'inéquation : $\sqrt{x^2 4} \le -4$ est :

 $S_{IR} = \emptyset$

- $\int S_{IR} = IR$
- 4) L'ensemble des solutions de l'inéquation : $|x^2 4| \ge -4$ est :
- $S_{IR} = \emptyset$

 $S_{IR} = IR$

Exercice N°4:

