

Année scolaire : 2009/2010			
Date :	Durée :	Niveau :	
$\frac{12}{12}$ 2009	∑ 2 Heures	2 ^{ème} Science	

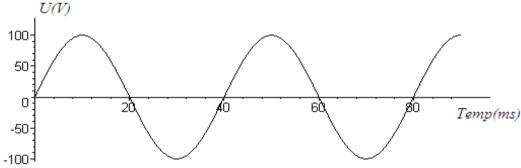
- > L'usage de la calculatrice est autorisé.
- ➤ Donner les expressions littérales avant l'application numérique.

Partie Chimie: (8 points)

Exercice 1: (4 points)		Сар
On considère les schémas de Lewis suivants : X et Y .	Bar	
1. Combien d'électrons possède chaque élément sur la couche de valence ?		A ₂
2. Sachant que pour l'élément X la couche externe est la couche ${\bf L}$ et pour		
l'élément Y c'est la couche M.		
a- Donner leurs structures et leurs formules électroniques.		A ₂
b- Déterminer leurs nombres de charge (Z)		A ₂
3. Déduire la position des deux éléments chimiques précédents dans le tableau		\boldsymbol{A}_1
périodique.		
Exercice 2: (4 points)		
On donne les éléments chimiques suivants : 11 Na et 17 Cl.		
1. Quel est l élément le plus électronégatif Na ou Cl ?justifier ?		A 1
2. a- Donner le schéma de Lewis de la molécule de NaCl en représentant les		A ₂
fractions de charge sur chaque atome.		
b- Déduire le nombre total des doublets pour cette molécule.		A ₂
c- Comment l'atome Na peut-il satisfaire la règle de l'octet ?		A ₂
d- Comment l'atome Cl peut-il satisfaire la règle de l'octet ?		\mathbf{A}_2
3. Dire si la molécule de NaCl est polaire ? Justifier ?		A ₂
نحُدْنى		

Partie Physique: (12 points)

Exercice 1: (8 points)


Un circuit électrique en série comporte un générateur de résistance interne $r=10~\Omega$ dont la tension à ces Bornes est $U_G=22V$, un moteur de force contre électromotrice

($E'=10V$) et de résistance interne r' , d'un résistor de résistance ($R=14\Omega$), d	l'un
ampèremètre qui indique une intensité $I = 0.5$ A. et d'un interrupteur K fermé.	

- 1. Représenter le circuit électrique, le sens du courant et les vecteurs tensions aux bornes de chaque dipôle.
- 2. Déterminer la force électromotrice E du générateur.
- 3. Déterminer les tensions aux bornes du résistor U_R ; puis du moteur U_M en appliquant la loi des mailles .
- 4. Déduire la résistance interne r' du moteur.
- 5. Calculer la puissance mécanique P_m (utile) fournie par le moteur.
- **6.** Donner une relation entre la puissance fournie par le générateur et les puissances reçues par le moteur et le résistor R.
- 7. Déduire la valeur de la puissance dissipée par effet joule dans le résistor R.
- 8. Calculer les rendements ρ_G du générateur et ρ_M du moteur.

Exercice 2: (4 points)

On applique à l'entrée du montage comportant un résistor et une diode idéale la tension alternative sinusoïdale représentée ci-dessous :

- 1. Par quel appareil peut on visualiser cette courbe?
- 2. Déterminer la période T de la tension d'entrée, sa fréquence N et sa valeur maximale U_m .
- **3.** Que vaut la tension à l'instant t = 44ms?

Bon Travail

Bar

2.5

0.5

1

0.5

0.5

1

1

0.5

0.5

 \mathbf{A}_{1}

A2

 \mathbf{A}_2

Cap

 \mathbf{A}_2

A2

A2

 \mathbf{A}_2

A₂

 \mathbf{A}_2

A2

 \mathbf{A}_2