_		_	_							_				_		_	_			÷	÷	<u>.</u>	÷		_	_		_		_	_						_	_				_	_	_		_		_	_	_		_									_				_	_	_	_	_	_	_	_	_											_	_	Ŀ	1
φ	Ė	t	t	Ť	Ť	Ħ	Ħ		7	Ħ	Ħ	Ħ	ij	t	÷	Ť	Ť	Ħ	Ħ	Ŧ	7	Ŧ	7	:		Ŧ	Ţ	:	Ħ	t	t	÷	Ė	Ü	Ħ				Ħ	Ħ	t	ij	t	7	Ħ	t	-	7	t	Ė	Ħ	Ė	÷		•	Ė	Ė	Ħ	Ė		Ė	Ė		Ė	Ė	Ė	Ė	ij	t	t	t	Ė	Ť	Ħ	Ť	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	Ť	Ė	Ť	Ť	Ħ	:
					Ż	'n	1	7	Ŀ	2	'n	1	6	ij	ä	i	اند	٠,	j	Ħ	Ľ		أل	:					1			÷	J.	1	÷	U	4	+	+	÷	÷	٦		-	÷	1	و	زا	÷	۰	ه ه	بن	ب	بر	7								;			:		::	٠	4	Ĺ		<u>.</u>	ال	1	وخ	ΥI	4	ĩ:	٠.	نن	,	10	اك	Æ		:
::				1	٠,		•		7	::				•	7		Ĩ		:		7		-	:			Ġ		1			÷		i	d				1																							`	~						•				7	7	7				::	Ξ	ī	ि		Ξ.	÷		÷
															:									:								:							_	ιL	_	4	iL	į	٠	ö	عاد	هـ	ال																																						:
															į									÷			Ġ					:																																																				-			:
						ی	ب	ul	4	4)	4	z	u	L	ï	•	۷	9	g	Ė	¥	إله	1	i			ŝ		H	H		:		i					ij,	ĩ.	: ;	٥	Ŀ	ü	•	ö	٠	(ل															,		_		,	٤		,		أخ	Ė	;	,	_	įĖ		7		:	Ü	Ŷ	1:			į
						Ĩ									:				H					Ė			à	Ė		i		:		H	H		Ė			ï	Ĩ	i		ij																			ڀ	~			•		~		7		-	~		1	1					-	៊ីំ				i
::	÷÷	÷	÷÷	<u>:</u>	÷	÷	÷	÷	÷	÷		÷÷	÷	÷	÷	-	÷	÷	÷÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷÷	÷	÷	÷	÷	÷÷	÷÷	÷	÷	÷	÷÷	÷÷	÷	÷	÷÷	÷	÷÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷		÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷÷	÷	÷	÷÷	÷	÷	لين	÷	÷	÷÷	÷	٠:

التمــــرين الأوّل: (5ن) يلي كل سؤال من الأسئلة ثلاث إجابات إحداها فقط صحيحة. أكتب على ورقة تحريرك رقم السؤال والإجابة الصحيحة الموافقة له.

: الإذا كان
$$x$$
 عدد حقيقي حيث $x \le -5$ فإنّ $x \le -5$ الإذا كان $x \in [-\infty; -5]$

$$x \in]-\infty; -5[$$
 (ε $x \in [-5; +\infty[$ (φ

$$|x| \le 1$$
 ليكن x عدد حقيقي . إذا كان $|x| \le 1$ فـــــــاِنّ

$$(x-1)(x+1) \ge 0 \ (\because \qquad (x-1)(x+1) \le 0 \ ()$$

$$2 \le y \le 5$$
 و $x \in [-3;-1]$ و $x \in [-3;-1]$ و $x \in [-3;-1]$

$$x-y$$
 و $x+y$ و (1

$$xy \in [-15; -2]$$
 بيّن أنّ (2

$$C = \frac{3x+4}{x-1}$$
 لنعتبر العبارة C حيث (3

$$C = 3 + \frac{7}{x - 1}$$
 بيّن أنّ

$$C \in \left[-\frac{1}{2}; \frac{5}{4}\right]$$
 إستنتج أنّ (ج

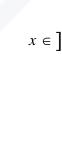
التمــــرين الثالث: (3ن) حــل في IR المعادلات التالية:

$$|x-1| = |2x-3|$$
 (\Rightarrow $(x+\sqrt{3})^2 = 25$ ()

التمرين الرّابع: (7ن) (وحدة القيس هي الصنتيمتر cm) تأمل الرسم المقابل حيث ABC متلثا متقايس الأضلاع طول ضلعه

C على (BC) و النقطة D مناظرة B بالنسبة إلى B

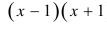
$$AH = 2\sqrt{3}$$
 أ) بيّن أنّ AH = 2 $\sqrt{3}$ بيّن أنّ المثلث ABD قائم الزاوية

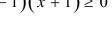

2) المستقيم العمودي على (BD) و المار من C يقطع [AD] في E

$$CE = \frac{4\sqrt{3}}{3}$$
 ابیّن أنّ

. [AC] في G و [AH] في [AC] في [AC] في [AC] في [AC] في [AC]

$$GH = \frac{2\sqrt{3}}{3}$$
 بیّن أنّ

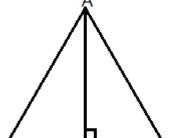

3) بين أنّ الرباعي AGCE معيّن



$x \in]-7;7[$ (ε

$$x \in$$

$$x \in]-\infty; -7[$$



$$3x + 4$$
 دیث C حیث (العبارة C) نعتبر العبارة)

$$x-1 \neq 0$$
 أ) بيّن أنّ

$$C = 3 + \frac{7}{x - 1}$$

$$\begin{bmatrix} 1 & 5 \\ \end{bmatrix}$$

$$x^2 - 9 = (x - 3)(x + 1)$$
 (ε

يعني $-\frac{7}{2} \le \frac{7}{x-1} \le -\frac{7}{4}$ (لأنَّ 7 عدد مــوجــب)

$$-\frac{7}{2}+3 \le \frac{7}{x-1}+3 \le -\frac{7}{4}+3$$
 يعني

$$C \in \left[-\frac{1}{2}; \frac{5}{4}\right]$$
 يعني $-\frac{1}{2} \le C \le \frac{5}{4}$

التمرين الثالث:

$$(x + \sqrt{3})^2 = 5^2$$
 يعني $(x + \sqrt{3})^2 = 25$ (أ

$$(x + \sqrt{3})^2 - 5^2 = 0$$

$$(x+\sqrt{3}+5)(x+\sqrt{3}-5)=0$$
 يعني

$$(x+\sqrt{3}-5)=0$$
 يعني $(x+\sqrt{3}+5)=0$ أو

$$x = -\sqrt{3} + 5$$
 يعني $x = -\sqrt{3} - 5$ أو

$$S_{IR} = \left\{ -\sqrt{3} - 5; -\sqrt{3} + 5 \right\}$$

$$x-1=-2x+3$$
 أو $x-1=2x-3$ إيعني $|x-1|=|2x-3|$

$$3x=4$$
 أو $-x=-2$

$$S_{IR} = \left\{ \frac{4}{3} ; 2 \right\}$$
 و منه $x = 2$ يعني $x = 2$ أو $x = 2$

$$(x-3)(x+3)=(x-3)(x+1)$$
 يعني $x^2-9=(x-3)(x+1)$ (ح

$$(x-3)(x+3)-(x-3)(x+1)=0$$
 يعني

$$(x-3)$$
 $[(x+3)-(x+1)]=0$ يعني

$$(x-3)$$
 $[x+3-x-1]=0$ يعني

$$x-3=0$$
 یعني $2(x-3)=0$

$$S_{IR} = \{3\}$$
 و منه $x = 3$

$$-3 \le x \le -1$$
 يعني $x \in [-3; -1]$

$$-3+2 \le x+y \le -1+5$$
 اِذَن $\begin{cases} -3 \le x \le -1 \\ 2 \le y \le 5 \end{cases}$ (1)

$$-5 \le -y \le -2$$
 اِذَن $2 \le y \le 5$ $-1 < 0$

$$-3+(-5) \le x+(-y) \le -1+(-2)$$
 إذن $\begin{cases} -3 \le x \le -1 \\ -5 \le -y \le -2 \end{cases}$

$$\boxed{-8 \le x - y \le -3}$$

$$1 \times 2 \le -xy \le 3 \times 5$$
 إذن $2 \le y \le 5$ جميع الأطراف موجية (2

$$2 \le -xy \le 15$$
 و منه

$$-15 \le xy \le -2$$
 افن $\begin{cases} 2 \le -xy \le 15 \\ -1 < 0 \end{cases}$

$$xy \in [-15; -2]$$
 و بالنالي

$$3 + \frac{7}{x-1} = \frac{3(x-1)}{x-1} + \frac{7}{x-1} = \frac{3x-3+7}{x-1}$$
 (3)

$$=\frac{3x+4}{x-1}=C$$

$$-3+(-1) \le x+(-1) \le -1+(-1)$$
 يعني $-3 \le x \le -1$ (ب

$$x-1 \in [-4;-2]$$
 و منه $-4 \le x-1 \le -2$ و منه

$$x-1 \neq 0$$
 افن
$$\begin{cases} x-1 \in [-4;-2] \\ 0 \notin [-4;-2] \end{cases}$$

$$-\frac{1}{2} \le \frac{1}{x-1} \le -\frac{1}{4}$$
 إذن $\begin{cases} -4 \le x - 1 \le -2 \\ \frac{1}{x-1} \le -\frac{1}{4} \end{cases}$ إذن $\begin{cases} -4 \le x - 1 \le -2 \\ \frac{1}{x-1} \le -\frac{1}{4} \end{cases}$

www.najahni.tn

التمرين الرابع:

1) أ) بما أن H المسقط العمودي لـــ A على (BC) فإنّ [AH] يمثل الإرتفاع الصادر من A في المثلث ABC المتقايس الأضلاع و بالتالي:

$$AH = \frac{\sqrt{3}}{2}AB = \frac{\sqrt{3}}{2} \times 4 = 2\sqrt{3}$$

ب) بما أنّ D مناظرة B بالنسبة إلى C فإنّ C منتصف [BD] . و بالتالي في المثلث ABD لدينا C منتصف أحد أضلاعه

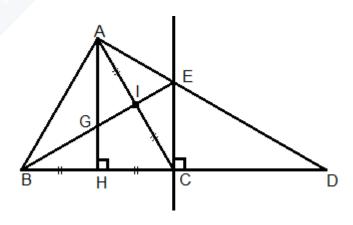
و CA=CB=CD=4 إذن النقطة C متساوية البعد عن رؤوسه الثلاث و بالتالي المثلث ABD قائم الزاوية في النقطة A

: فإن المستقيم) فإن (AH) (CE) و $C\in (HD)$ و $E\in (AD)$ (يعامدان نفس المستقيم) فإن (2)

$$CE = \frac{DC \times AH}{DH} = \frac{4 \times 4\sqrt{3}}{6} = \frac{4\sqrt{3}}{3}$$
 يعني $\frac{DC}{DH} = \frac{CE}{AH}$ و منه $\frac{DE}{DA} = \frac{DC}{DH} = \frac{CE}{AH}$

ب) بما أن [AH] الإرتفاع الصادر من A في المثلث ABC المتقايس الأضلاع فإن [AH] يمثل أيضا الموسط الصادر من A في المثلث ABC بما أن [AH] منتصف [AC] فإن [BI] يمثل الموسط الصادر من B في المثلث ABC .

 $GH = \frac{1}{3} \ AH = \frac{1}{3} \times 2\sqrt{3} = \frac{2\sqrt{3}}{3}$: و يقله و بالتالي (BI) و يا المثلث ABC فإنّها تمثل مركز ثقله و بالتالي (AH) و إلى المثلث G


(لأنّ مركز ثقل المثلث يقع عند ثلث الموسط إنطلاقا من منتصف الضلع)

$$AG = CE$$
 و نعلم أن $G = AH - GH = 2\sqrt{3} - \frac{2\sqrt{3}}{3} = \frac{4\sqrt{3}}{3}$ إذن $G \in [AH]$ و بما أن $G \in [AH]$

(عامدان نفس المستقيم) (AG) / (CE) متوازي الأضلاع (له ضلعان متوازيان و متقايسان في آن واحد) (AG) لــــدينا (AG) (السؤال السابق) AG

بما أن [BI] يمثل الموسط الصادر من B في المثلث المتقايس الأضلاع ABC فإنّ [BI] يمثل أيضا الإرتفاع الصادر من B في المثلث ABC و بالتالي بما أن BC و بما أنّ BC و بما أن BC و بما أن

و بالتالي الرباعي AGCE متوازي الأضلاع قطراه متعامدان إذن فهو معين

www.najahni.tn