DUREE: 2 H

EPREUVE: SCIENCES PHYSIQUES PROF: BENSALEM MOHAMED NIVEAU: 2ème ANNEE SECTION: SCIENCES

CHIMIE

EXERCICE N°1 (5 points)

1) Reproduire et compléter le tableau :

A2

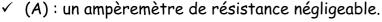
19F 35CI Ne 15 P Symbole du nucléide Groupe (colonne de l'élément dans le tableau périodique) VIII Période (ligne de l'élément dans le tableau périodique) 2 Nombre de neutrons 10 16 18 2) Dégager du tableau les éléments chimiques appartenant à la même famille. Quel A_2 0,5 est le nom de cette famille? 3) a) Donner la structure électronique et le schéma de Lewis de chaque atome 0,5 A_2 figurant dans le tableau. b) Combien de liaisons covalentes peut établir chaque atome figurant dans le 0,5 A_2 tableau. c) Expliquer par le schéma de Lewis, la formation des molécules F₂ et PF₃. 0,5 A_2 4) a) Que caractérise l'électronégativité d'un atome? A_1 b) Classer par ordre d'électronégativité croissante, les trois atomes P, F et Cl. C_1 0,5 c) Préciser la nature (polaire ou non polaire) : A_1 ✓ De la liaison P — F dans la molécule PF₃. ✓ De la liaison F – F dans la molécule F₂. Placer, s'il y a lieu, les fractions de charges (charges partielles) sur chaque atome. EXERCICE N°2 (3 points) 1) La masse molaire de l'oxygène est M (O) = 16 g.mol⁻¹; calculer la masse d'un atome 0,5 A_2 d'oxygène. 2) Le noyau de l'atome contient 8 protons et un nombre N de neutrons. a) Combien d'électrons renferme cet atome? Calculer la masse totale des électrons 0,5 A2 de l'atome et la comparer à celle de l'atome. Quelle conclusion peut-on dégager? b) Déterminer la masse m du noyau de l'atome oxygène. A_2 0,5 c) Déterminer le nombre N des neutrons du noyau de l'atome oxygène. 0,5 A_2 d) En déduire le nombre de masse A de l'oxygène. 0,5 A_2 e) Donner le symbole du noyau de l'atome oxygène. 0,5 A_2 On donne: $m_p = m_n = 1,67.10^{-27} \text{ kg}$ \mathcal{N} = 6,02.10²³

 $m_e = 9.1.10^{-31} \text{ kg}$

PHYSIQUE

EXERCICE N°1 (9 points)

On considère le circuit électrique ci-contre :

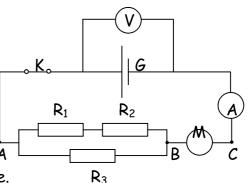

 \checkmark G: un générateur de force électromotrice

E = 12 V et de résistance interne r.

✓ M: un moteur de force contre électromotrice E' et de résistance interne r'.

√ Trois résistors de résistances respectives

 R_1 , R_2 et R_3 tel que : $R_1 = R_2 = 5\Omega$ et $R_3 = 3.R_1$.


- √ (V): un voltmètre.
- ✓ K: un interrupteur.
- A. L'interrupteur K est ouvert : Quelles sont les indications :
- 1) Du voltmètre?
- 2) De l'ampèremètre?
- B. L'interrupteur K est fermé.
- I.Le moteur est bloqué; l'ampèremètre indique I_1 = 1 A et le voltmètre indique U_1 = 8 V.

1)

- a) Calculer la résistance interne du générateur.
- b) Calculer l'énergie électrique reçue par le dipôle vue entre les points A et C du circuit pendant 2 mn.
- c) Quelle est la nature de cette énergie. Justifier.

2)

- a) Calculer la résistance équivalente R_e vue entre les points A et C.
- b) Montrer que la résistance équivalente vue entre les points A et B est $R = (6/5) R_1$.
- c) En déduire la résistance r' du moteur.
- 3) On prendra r' = 2Ω , calculer :
 - a) La tension aux bornes du résistor R₃.
 - b) La puissance électrique dissipée par effet joule dans la résistance R₃.
- II.Le moteur fonctionne normalement : l'ampèremètre indique I' = 0,8 A. Calculer :
- 1) La tension aux bornes du générateur.
- 2) La tension aux bornes du moteur. Déduire sa f.c.e.m. E'.
- 3) La puissance dissipée par effet joule dans le moteur.
- 4) La puissance électrique totale reçue par le moteur.
- 5) Le rendement p de ce moteur.

 A_2

 A_2

 A_2

A2

 A_2

 C_1

 A_2

 A_2

A2

A2

A2 A2

 A_2

A2

 A_2

0,5

0,5

1

1

0,5

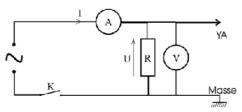
0,5

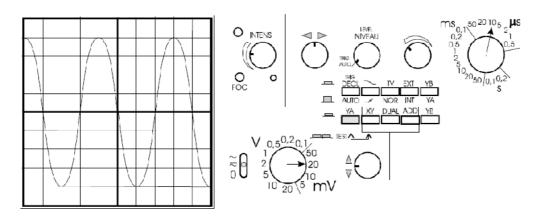
0.5

0.5

0,5

0,5


0,5


0,5

0,5

EXERCICE N°2 (3 points)

L'oscillogramme ci-dessous permet la visualisation de la tension variable aux bornes du dipôle résistif R.

- 1) Quel est le nom de la tension variable représentée par l'oscillogramme?
- 2) Quels sont les calibres utilisés sur l'oscilloscope pour la sensibilité verticale et le balayage horizontal.
- 3) Calculer la valeur maximale atteinte par la tension U_{max} .
- 4) Calculer la valeur efficace indiquée par le voltmètre U.
- 5) Déterminer la période T, et calculer la fréquence f.

A₂ 0,5

- $A_2 = 0,5$
- A₂ 0,5
- $A_2 = 0.5$
- A_2 1

BONTRAVAIL

